segunda-feira, 25 de março de 2019


ε = W'/W
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Emissividade de um material, propriedade representada pela letra e ou ε, diz respeito a capacidade de emissão de energia por radiação da sua superfície. Possuem a capacidade de emitir energia eletromagnética todos os corpos a temperatura superior a zero Kelvin. Essa taxa de emissão é calculada através da razão entre a energia irradiada por um determinado material e a energia irradiada por um corpo negro para um mesmo comprimento de onda (ε=1). Qualquer objeto que não seja um verdadeiro corpo negro tem emissividade menor que 1 e superior a zero.
0 < ε ≤ 1
Quanto maior o valor de ε, mais próxima a emissividade do material é da do corpo negro, ou seja, maior a sua capacidade de emissão de energia. O físico Gustav Kirchhoffcomprovou, em 1860, que a capacidade de um corpo absorver energia é igual à de emití-la. Se uma superfície está recebendo radiação, ela absorve também com igual coeficiente de emissividade. Sendo assim, podemos ainda chamar essa propriedade de absorvidade. Ou seja, aquele material que irradia energia também absorve radiação com o mesmo comprimento de onda. [1]
ε = W'/W
ε: emissividade
W': quantidade de energia emitida pelo corpo (λ constante)
W: quantidade de energia emitida pelo corpo negro (λ constante)
Kirchhoff também propôs teoricamente o conceito de corpo negro, um material que absorvesse toda a energia incidente sobre ele. Em decorrência disso, ele seria o emissor ideal.
Diferentemente dos corpos negros, os corpos reais não absorvem toda a energia eletromagnética incidente sobre eles. Um corpo qualquer pode absorver ou emitir uma parcela (α) da radiação incidente sobre ele, pode refletir uma parcela (δ) e/ou pode transmitir uma parcela (τ). A soma das três parcelas equivale à energia total que incidiu sobre ele.
α + δ + τ = 1
A emissividade de um material está relacionada à sua superfície e ao seu acabamento; varia de acordo com a temperatura em que o objeto se encontra e com o comprimento de onda da radiação emitida.
Corpos com emissividade constante e menor que 1 são denominados corpos cinza. A determinação de sua emissividade não depende do comprimento de onda. A emissividade dos corpos reais, no entanto, varia com o comprimento de onda.

Temperatura e emissividade

A emissividade de um material varia, entre outros fatores, em decorrência da temperatura. A baixas temperaturas, entre 250K e 350K, alguns corpos não metálicos podem apresentar comportamento semelhante ao dos corpos negros, com emissividades próximas de 0,8. As superfícies metálicas, no entanto, apresentam emissividades relativamente baixas nesse intervalo de temperaturas. Ainda nessas condições, podemos observar que a emissividade do solo para o ar é de aproximadamente 0,35, ao passo que a da neve é de 0,95. [2]

A emissividade do céu[editar | editar código-fonte]

A temperatura ambiente, nota-se que o céu diurno possui ε muito próximo de 1 no horizonte, comportando-se de maneira similar a um corpo negro nessa região. No zênite, sua a emissividade é um valor mais baixo. A média da emissividade do céu é de 0,7; entretanto, em locais de grande altitude ou pouca humidade, o vapor d'água e o dióxido de carbono fazem com que a absorção seja menor, diminuindo, consequentemente, a emissividade.
Vistas de baixo, as nuvens se aproximam de como corpos negros, a temperatura de 1K abaixo da temperatura ambiente.
O céu noturno é considerado um corpo negro, cuja temperatura de maior eficácia é 190K.

Emissividades usuais de alguns materiais[3][editar | editar código-fonte]

MaterialEmissividade (ε)
Aço inoxidável – típico, polido 0,17 
Alumínio – altamente polido, película 0,04 
Água 0,96 
Areia 0,90 
Concreto 0,88 – 0,93 
Janela de vidro 0,90 – 0,95 
Materiais de construção – placas de amianto 0,93 – 0,96 
Materiais de construção – tijolo, vermelho 0,93 – 0,96 
Materiais de construção – estuque ou placa de gesso 0,90 – 0,92 
Materiais de construção - madeira 0,82 – 0,92 
Papel, branco 0,92 – 0,97 
Pavimentação de asfalto 0,85 – 0,93 
Rochas 0,88 – 0,95 
Solo 0,93 – 0,96 
Tecido 0,75 – 0,90 
Tintas – pretas 0,98 
Tintas – branca acrílica 0,90 
Tintas – branca óxido de zinco 0,92 
Vegetação0,92 – 0,96 
Cobre polido0,01
Vidro0,92
Ferro polido0,23
Tinta a óleo0,94
Valores de emissividade medidos a 300K (27°C). [4]












princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].